OptiCin

SFP, 1.25Gbps, LC, 3.3V, sm, 1310nm, DDM, 0-20km

Особенности:

- возможность горячей замены
- двойной LC разъем
- детальная информация о модули в EEPROM Digital diagnostic monitor interface (DDMI)
- соответствие спецификации SFP MSA и SFF-8472

Области применения:

- Gigabit Ethernet 1000Base-LX
- ATM
- SONT/SDH/PDH
- FDDI
- Fiber Channel

Absolute maximum ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Operating Temperature	Top	-5	+70	°C
Supply Voltage	Vcc	-0.5	+4.0	V
Voltage at any Input Pin	VIN	0	Vcc	V
Power supply current	Icc	-	300	mA

Operating Conditions

Transmitter (T=0 to +70°C, Vcc =3.1~3.5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Central Wavelength	λc	1270	1310	1350	nm
Spectral Width	Δλ	-	-	3	nm
Output Power	Po	-8	-	-3	dBm
Extinction Ratio	ER	9	-	-	dB
Optical Rise/Fall Time	Tr / Tf	-	-	260	ps
Total Jitter	TJ	-	-	227	ps
Pout @TX Disable Asserted	Poff	-	-	-45	dBm
Differential Input Voltage	VDIFF	500	-	2400	mV
Transmit Fault Output-Low	TX_FAULTL	0	-	0.8	V
Transmit Fault Output-High	TX_FAULTH	2.0	-	Vcc	V
TX_DISABLE Assert Time	t_off	-	-	10	μs
TX_DISABLE Negate Time	t_on	-	-	1	ms

OptiCin

Time to Initialize, Include Reset of TX_FAULT	t_init	-	-	300	ms
TX_FAULT From Fault to Assertion	t_fault	-	-	100	μs
TX_DISABLE Time to Start Reset	t_reset	10	-	-	μs

Receiver (T=0 to +70°C, Vcc=3.1~3.5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Wavelength Range	λ	1270	-	1620	nm
MIN. Input Power (Sensitivity)	PMIN	-	-	-21	dBm
MAX. Input Power (Saturation)	PMAX	-3	-	-	dBm
Signal Detect-Asserted	РА	-	-	-21	dBm
Signal Detect-De-Asserted	PD	-35	-	-	dBm
Signal Detect Hysteresis	Phys	0.5	-	5	dB
Receiver Loss of Signal Output Voltage-Low	RX_LOSL	0	-	0.8	V
Receiver Loss of Signal Output Voltage-High	RX_LOSH	2.0	-	Vcc	V
LOS Assert Time	t_loss_on	-	-	100	μs
LOS De-Assert Time	t_loss_off	-	-	100	μs

Block Diagram of Transceiver

EEPROM Description

The SFP serial ID provides access to sophisticated identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. The serial interface uses the 2-wire serial CMOS E2PROM protocol defined for the ATMEL

AT24C01A/02/04 family of components.

When the serial protocol is activated, the host generates the serial clock signal (SCL, Mod Def 1). The positive edge clocks data into those segments of the E2PROM that are not write-protected within the SFP transceiver. The negative edge clocks data from the SFP transceiver.

The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Monitoring Interface

The interface is an extension of the serial ID interface defined in the SFP MSA specification. The specifications define a 256 byte memory map in EEPROM which is accessible over a 2 wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is backward compatible with both the GBIC specification and the SFP MSA. Please see Figure 1.

D Pin Assignment and Function Definitions

It is the responsibility of the system integrator to assure that no thermal, energy, or voltage hazard exists during the hot-plug-unplug sequence. It is also the responsibility of the system integrator and end-user to minimize static electricity and the probability of ESD events by careful design.

Pins Assignment

I Function definition

Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3

OptiCin

5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

1. TX Fault is an open collector output, which should be pulled up with a $4.7K \sim 10K$. resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K \sim 10K$ resistor. Its states are:

Low (0~0.8V): Transmitter on

(>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled

Open: Transmitter Disabled.

3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a $4.7K \sim 10K$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 is grounded by the module to indicate that the module is present.

MOD-DEF 1 is the clock line of two wire serial interface for serial ID.

MOD-DEF 2 is the data line of two wire serial interface for serial ID.

4. LOS is an open collector output, which should be pulled up with a $4.7K \sim 10K$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.

5. These are the differential receiver outputs. They are AC coupled 100.differential lines which should be terminated with 100. (differential) at the user SERDES.

6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100.differential termination inside the module.

OptiCin

B Recommended Host Board Supply Filtering Network

Example SFP Host Board Schematic SFP

OptiCin